BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF CALIFORNIA

In the Matter of the Application of The Nevada)	Application 10-07-001
Hydro Company for a Certificate of Public)	(Filed July 6, 2010)
Convenience and Necessity for the Talega-)	
Escondido/Valley-Serrano 500 kV Interconnect.)	
•)	

Direct Testimony of Ian Ramsay

on behalf of

The Nevada Hydro Company

Direct Testimony of Ian Ramsay

on behalf of The Nevada Hydro Company

1	Q.	Please state your name, title, and business address.
2	A	My name is Ian Ramsay. I am a Senior Project Manager at Siemens and my business
3		address is 2888 Loker Avenue East, Suite #315, Carlsbad, CA 92010.
4	Q.	Please describe your employment and other relevant experience.
5	A.	I am a Senior Project Manager at Siemens for High Voltage Transmission Systems. I am
6		the appointed Siemens project manager for the TE/VS Interconnect project. I have a
7		Bachelor of Engineering Degree in Electrical and Electronic Engineering. I have been
8		involved in the engineering, design, test and project management of High Voltage
9		Transmission projects since 1990.
10	Q.	On whose behalf are you submitting this testimony?
11	A.	On behalf of Nevada Hydro.
12	Q.	What is the purpose of your testimony?
13	A.	I am providing the engineering cost estimates for the TE/VS interconnect. I am also
14		commenting upon the proposed schedule and the project components.
15	Q.	How is your testimony organized?
16	A.	My testimony provides a simplified overview of the project components and the
17		estimated costs for those components. Also, I have included comments as to the project
18		schedule.
19	Q.	Are you familiar with the Proponent's Environmental Assessment, Chapter 3 (Project
20		Description) submitted by Nevada Hydro with its CPCN application?
21	A.	Yes I am.
22	Q.	Does it accurately reflect the scope of work for the Project? If not, why not?

1	A.	The description of the project is accurate apart from in Attachment 11 of the PEA on				
2		page 3 the description discusses an OHL connection from Mile Post 12.5 to the Santa				
3		Rosa Substation, this project feature no longer exists.				
4		,	The Lake Switchyard consists of 2 off 500kV 1 and ½ breaker schemes. These			
5		connect	the existing SCE Serrano-Valley 500kV line and the TE/VS interconnect.			
6	Q.	Please d	Please describe the key components of the Project.			
7	A.	The pro	The project is split up into a number of key components, these being:			
8		1.	Loop in of the Valley/Serrano 500kV transmission line to the Lake			
9			Switchyard			
10		2.	500kV Lake Switchyard			
11		3.	500kV Transmission line between the Lake Switchyard and the North			
12			GIL (Gas Insulated Line) Transition			
13		4.	Top of ridge GIL transmission line			
14		5.	Connection between the Top of Ridge GIL transmission line and the			
15			Santa Rosa substation			
16		6.	Santa Rosa Substation			
17		7.	Santa Rosa 115kV Expansion and associated 115kV transmission line			
18	*	8.	500kV Transmission line between the South GIL (Gas Insulated Line)			
19			Transition and the Case Springs Substation			
20		9.	Case Springs 500kV Substation			
21		10.	Case Springs 230kV Substation			
22		11.	Southern California Edison Upgrades			
23		12.	SDG&E Upgrades			

Are you familiar with Appendix B, Section 2 (Project Plan) submitted by Nevada Hydro 1 Q. 2 with its CPCN application? 3 A. Yes. Does it accurately reflect the involvement Siemens will have in implementing the 4 Q. 5 Project? If not, why not? It reflects the anticipated involvement of Siemens in the project. However under Section 6 A. 2.4 Siemens and NHC are not yet in the planning phase of the project. Also, EPC 7 negotiations have not yet started between Nevada Hydro and Siemens. Therefore, the 8 9 type of project whether lump-sum, cost plus etc has not yet been agreed upon. Section 3 of Appendix B (Cost Estimate) submitted by Nevada Hydro with its CPCN 10 Q. application states that Siemens will refine the cost estimate of the Project. Has this 11 occurred? 12 Refinement of the cost estimate is an ongoing process. This process has been going on 13 A. since late 2005 when Siemens first became involved in the project. 14 Please describe the cost estimates for the key components of the Project. 15 Q. Referring to Exhibit 1 to this testimony, I have shown the estimated costs as described 16 A. above in the key components. The total estimated cost of the project is \$502,494 17 T' USD. The estimated costs for each of the components are as follows (in T' USD): 18 9,936 19 1. Serrano – Valley loop in \$ 35,757 20 2. Lake Switchyard 500kV OHL Lake Switchyard - North Transition \$ 23,381 21 3. \$ 33,261 GIL transmission line 22 4.

GIL transmission line and the Santa Rosa substation

23

5.

\$ 32,212

1		6. Sa	nta Rosa Substation	\$ 57,455			
2		7. Sa	nta Rosa 115kV Expansion	\$ 25,739			
3		8. 50	0kV OHL South Transition - Case Springs Substation	\$ 46,678			
4		9. Ca	se Springs 500kV Substation	\$111,838			
5		10. Ca	se Springs 230kV Substation	\$ 42,428			
6		11. So	uthern California Edison Upgrades	\$ 36,547			
7		12. SD	OG&E Upgrades	\$ 47,262			
8		Each substation is also broken down to a more granular level for information purposes in					
9	the appendix to my testimony. Siemens currently anticipates providing the following						
10	components: 500kV GIS, 230kV GIS, 115kV GIL, 500kV GIL, Phase Shifting						
11		transformers, step down transformers and generation step up (GSU) Transformers.					
12	Q.	Who prepared these cost estimates?					
13	A.	Budgetary cost estimates have been prepared by Siemens since we became involved with					
14		the project in 2005. As the project has matured Siemens has revised the cost estimates.					
15		The estimated costs stated above are based on the information Siemens has available to					
16		us at the present time.					
17	Q.	How were they prepared?					
18	A.	The cost estimates are a combination of estimates from EPC and Engineering firms and					
19		also Siemens internal estimates. The calculation program used is Siemens proprietary					
20		information.					
21	Q.	Please identify any factors that may affect the cost estimates for the key components.					
22	A.	Due to the fact that we do not know when the project will actually begin we cannot					
23		forecast USD/EU	RO exchange rates, internal financing costs, material a	nd component			

1 costs or labor rates. We also do not have a specific EPC contract set of terms and 2 conditions which will also affect pricing. 3 Our cost estimate does not include the following: Permitting and land acquisition 4 1. 5 2. Site preparation (Lake, Santa Rosa and Case Springs substations) 6 3. GIL Tunnels 7 4. Access roads Are you familiar with Appendix F (Proposed Schedule for Construction) submitted by 8 Q. 9 Nevada Hydro with its CPCN application? Yes. 10 A. Does it accurately describe the significant milestones and their durations for the Project? 11 Q. 12 If not, why not? The estimated project schedule provided by Siemens is a two year schedule. It will be 13 A. possible to construct the project in two years depending on the timely completion of the 14 15 GIL tunnels. After the GIL tunnels have been completed Siemens requires a period of 4 months to install the GIL system. Testing can only take place after this. Also, most 16 17 major equipment has lead times of 18 months after orders have been placed. The scheduling of the SDG&E and SCE upgrades, especially the Etiwanda 18 Substation, will be challenging due to outage requirements. However this scheduling 19 20 should be possible. 21 Does this conclude your testimony? Q. 22 A. Yes it does.

TE/VS Interconnect - Cost Estimate

Item	n Description	Qty	Unit		Total
1	OHL Valley/Serrano - Lee Lake	4	Miles	\$	9,935,742
	Lake Switchyard	246	N-10 (141)	\$	35,756,786
	500kV GIS Equipment	1	Set	\$	17,852,672
11	13.8kV Switchgear	1	Set	\$	555,688
12	Transformers	1	Set	\$	640,958
13 14	AC/DC Supply Control and Protection	1 1	Set Set	\$	451,517 1,302,694
15	Telecommunication equipment	1	Set	\$ \$	645,024
16	Cables	*1	Set	\$	411,525
17	Miscellaneous works	i	Set	\$	2,286,277
18	Civil works	1	Set	\$	11,610,430
20	OHL Lake Switchyard to GIL North Transition	9.4	Miles	\$	23,381,285
	Gas Insulated Line (GIL)			\$	65,472,847
30	Top of Mountain 500kV GIL	1	Set	\$	28,990,506
31	Top of mountain to Pump House GIL	1	Set	\$	32,211,673
	GIS Switches and GIL transmission to OHL	1	Set	\$	3,056,372
33		1	Set	\$	361,794
35	Control and Protection Miscellaneous works	1	Set	\$	129,005 723,498
36	Civil works	1	Set Set	\$ \$	
30	CIVII WOIKS	1	Set	φ	
	Santa Rosa Substation			\$	57,454,621
40	500kV GIS Equipment	1	Set	\$	19,883,247
41	13.8kV Switchgear	1	Set	\$	477,124
42	Transformers	1	Set	\$	10,480,898
43	AC/DC Supply	1	Set	\$	451,517
44	Control and Protection	1	Set	\$	159,554
45	Telecommunication equipment	1	Set	\$	645,024
46 47	Cables Miscellaneous works	1 1	Set Set	\$ \$	177,704
48	Civil works	1	Set	э \$	1,451,702 23,727,850
40	Civil Works	T.	361	φ	23,727,030
40	115kV Expansion Project	4	C-4	¢.	0.000.000
49 50	115kV GIS - 500/115kV 500MVA Transformer 115kV OHL	1 1	Set Set	\$ \$	8,968,655
50	115KV OHL	I.	Sei	Ф	16,770,622
55	OHL GIL South Transition to Case Springs Substation	18.8	Miles	\$	46,678,116
	Case Springs Substation (500kV)			\$	111,838,280
	500kV GIS Equipment	1	Set	\$	21,324,567
61	13.8kV Switchgear	1	Set	\$	477,124
62	Transformers - 500/230KV 500MVA, Auxiliary transformers	1	Set	\$	23,768,636
63	Transformers - Phase shifters 230kV 500MVA	1	Set	\$	31,040,081
	AC/DC Supply	1	Set	\$	451,517
	Control and Protection	1	Set	\$	351,862
66 67	Telecommunication equipment Cables	1 1	Set Set	\$ \$	645,024 280,585
01	Gabica	Ļ	Jei	Ψ	200,000

TE/VS Interconnect - Cost Estimate

68 Miscellaneou 69 Civil works	us works	1 1	Set Set	\$ \$	2,537,735 30,961,148
Case Spring	gs Substation (230kV)			\$	42,428,009
70 230kV GIS E		1	Set	\$	21,438,484
71 13.8kV Swite	- 30 Particular Material American American	1	Set	\$	477,124
72 AC/DC Supp	bly	1	Set	\$	451,517
73 Control and	Protection	1	Set	\$	1,480,660
74 Telecommur	nication equipment	1	Set	\$	· · · · · · · · · · · · · · · · · · ·
75 Cables		1	Set	\$	224,468
76 Miscellaneou	us works	1	Set	\$	295,086
77 Civil works		1	Set	\$	18,060,670
SDG&E Upg	yrades			\$	47,261,909
80 Case Springs	s 230kV GIS Substation See items 70 through 77	1	Set	-	
	ondido 230kV loop in	1	Set	\$	1,690,300
	r replacement	1	Set	\$	2,875,000
83 230kV OPG\	N	1	Set	\$	1,259,700
84 Escondido su		1	Set	\$	4,391,000
85 Talega sub 2		1	Set	\$	3,785,000
	ondido 230kV line upgrade	51	Miles	\$	24,510,909
87 69kV Line re	location	1	Set	\$	8,750,000
SCE Upgrad				\$	36,547,000
	station upgrades	1	Set	\$	126,000
	ation upgrades	1	Set	\$	2,948,400
	bstation upgrades	1	Set	\$	30,164,000
93 Telecomms		1	Set	\$	1,714,000
94 Power System		1	Set	\$	94,600
	vard - see items 10 through 18	1	Set	\$	-
	alley - Serrano to Lake Switchyard See item 1	1	Set	\$	
97 Corporate Re	estate	1	Set	\$	500,000
98 Permitting		1	Set	\$	1,000,000
			TOTAL	\$	502,493,870

CERTIFICATE OF SERVICE

I hereby certify that I have this day served a copy of

"DIRECT TESTIMONY OF IAN RAMSAY ON BEHALF OF THE NEVADA HYDRO

COMPANY"

on all known parties to A.10-07-001 by transmitting an electronic mail message with the document attached to each person named in the official service list who provided an electronic mail address.

Executed this 30th day of November, 2010 at Washington, D.C.

/s/ Patrick L. Morand
Patrick L. Morand
Wright & Talisman, P.C.
(202) 393-1200
morand@wrightlaw.com

Service List A.10-07-001

Last Updated November 23, 2010

......

Parties

FAIRLUK L. MORAND

WRIGHT & TALISMAN, P.C.

1200 G STREET, N.W., SUITE 600

WASHINGTON, DC 20005

FOR: WRIGHT & TALISMAN, P.C.

FOR: THE NEWED TO THE NEW TO

ROBERT KANG SOUTHERN CALIFORNIA EDISON COMPANY 2244 WLANUT GROVE AVE., PO BOX 800 ROSEMEAD, CA 91770 FOR: SOUTHERN CALIFORNIA EDISON COMPANY SAN DIEGO, CA 92101

CHARITY SCHILLER BEST BEST & KRIEGER LLP 3750 UNIVERSITY AVENUE DISTRICT

JACQUELINE AYER 40701 ORTEGA HIGHWAY LAKE ELSINORE, CA 92530 FOR: FOREST RESIDENTS OPPOSING NEW TRANSMISSION LINES (FRONTLINES)

GREGORY HEIDEN CALIF PUBLIC UTILITIES COMMISSION LEGAL DIVISION ROOM 5039 505 VAN NESS AVENUE SAN FRANCISCO, CA 94102-3214 FOR: DIVISION OF RATEPAYER ADVOCATES FOR: THE NEVADA HYDRO COMPANY

PAUL A. SZYMANSKI ATTORNEY AT LAW SAN DIEGO GAS & ELECTRIC COMPANY 101 ASH STREET HQ 12 FOR: SAN DIEGO GAS & ELECTRIC COMPANY

GENE FRICK 4271 BAGGETT DR RIVERSIDE, CA 92505 RIVERSIDE, CA 92502-1028 FOR: SANTA ANA MOUNTAINS TASK FORCE OF FOR: ELSINORE VALLEY MUNICIPAL WATER THE SIERRA CLUB/FRIENDS OF THE FOREST (TRABUCO DISTRICT) / THE SANTA ROSA PLATEAU

> JOHN PECORA 16336 GRAND AVENUE LAKE ELSINORE, CA 92530 FOR: JOHN PECORA

JONATHAN EVANS CENTER FOR BIOLOGICAL DIVERSITY 351 CALIFORNIA ST., SUITE 600 SAN FRANCISCO, CA 94104 FOR: CENTER FOR BIOLOGICAL DIVERSITY

Information Only

MRW & ASSOCIATES, LLC EMAIL ONLY EMAIL ONLY, CA 00000

CAL. INDEPENDENT SYSTEM OPERATOR CORP. EMAIL ONLY EMAIL ONLY, CA 00000

JENNIFER M. HALEY BEST BEST & KRIEGER LLP EMAIL ONLY EMAIL ONLY, CA 00000-0000

JUDITH SANDERS CAL. INDEPENDENT SYSTEM OPERATOR CORP. EMAIL ONLY EMAIL ONLY, CA 00000-0000

NATHAN JACOBSEN EMAIL ONLY EMAIL ONLY, CA 00000-0000

SOPHIE A. AKINS BEST BEST AND KRIEGER, LLP EMAIL ONLY

EMAIL ONLY, CA 00000-0000

MAYA LOPEZ GRASSE 4209 E. VERMONT ST. LONG BEACH, CA 90814

LUPE GARCIA ELECTRIC POWER GROUP 201 S. LAKE AVENUE, STE. 400 PASADENA, CA 91101

DAVID KATES THE NEVADA HYDRO COMPANY 2416 CADES WAY VISTA, CA 92083 FOR: THE NEVADA HYDRO COMPANY

KEVIN O'BEIRNE REGULATORY CASE MGR. SAN DIEGO, CA 92123

RANCHO CAPISTRANO PROPERTY OWNERS ASS 3750 UNIVERSITY AVENUE, SUITE 400 34655 ARROYO ROAD RIVERSIDE, CA 92502 FOR: ELSINORE VALLEY MUNICIPAL WATER DISTRICT

LINDA LOU RIDENOUR 33628 BRAND ST. LAKE ELSINORE, CA 92530 FOR: LAKE ELSINORE HISTORICAL SOCIETY FOR: BUTTERFIELD MULTIUSE TRAILS

RONALD E. YOUNG DISTRICT GEN. MANAGER ELSINORE VALLEY MUNICIPAL WATER DISTRICT 26051 VIA CONCHA 3131 CHANEY STREET / PO. BOX 3000 MISSION VIEJO, CA 92691 LAKE ELSINORE, CA 92531-3000

RUSS KANZ EMAIL ONLY EMAIL ONLY, CA 00000-0000

JOHN BUSE CENTER FOR BIOLOGICAL DIVERSITY 5656 S. DORCHESTER AVE. NO 3 CHICAGO, IL 60637

FRED MOBASHERI CONSULTANT ELECTRIC POWER GROUP, LLC 201 SOUTH LAKE AVE., SUITE 400 PASADENA, CA 91101

CASE ADMINISTRATION SOUTHERN CALIFORNIA EDISON COMPANY 2244 WALNUT GROVE AVENUE, ROOM 370 ROSEMEAD, CA 91770

> DON LIDDELL DOUGLASS & LIDDELL 2928 2ND AVENUE SAN DIEGO, CA 92103

CENTRAL FILES SAN DIEGO GAS AND ELECTRIC COMPANY SAN DIEGO GAS & ELECTRIC COMPANY 8330 CENTURY PARK CT, CP32D, RM CP31-E 8330 CENTURY PARK COURT, CP32D SAN DIEGO, CA 92123-1530

MARTIN RIDENOUR 33628 BRAND ST. LAKE ELSINORE, CA 92530

PETER LEWANDOWSKI THE NEVADA HYDRO COMPANY CALIFORNIA ENERGY MARKETS
425 DIVISADERO ST. STE 303
SAN FRANCISCO, CA 94117-2242

STEPHEN E. VEVLVIS
ATTORNEY AT LAW
MILLER, STARR & REGALIA
1331 N. CALIFORNIA BLVD., 5TH FL.
WALNUT CREEK, CA 94596
FOR: FRIESIAN FOCUS, LLC, THE FERNANDEZ
TRUST, AND JOSEPH AND JOAN FERNANDEZ

State Service

ANDREW BARNSDALE
CALIF PUBLIC UTILITIES COMMISSION
ENERGY DIVISION
AREA 4-A
505 VAN NESS AVENUE
SAN FRANCISCO, CA 94102-3214

MICHAEL YEO
CALIF PUBLIC UTILITIES COMMISSION
ELECTRICITY PLANNING & POLICY BRANCH
ROOM 4103
505 VAN NESS AVENUE
SAN FRANCISCO, CA 94102-3214

ANGELA K. MINKIN
CALIF PUBLIC UTILITIES COMMISSION
DIVISION OF ADMINISTRATIVE LAW JUDGES
ROOM 5017
505 VAN NESS AVENUE
SAN FRANCISCO, CA 94102-3214

......

NICHOLAS SHER
CALIF PUBLIC UTILITIES COMMISSION
LEGAL DIVISION
ROOM 4007
505 VAN NESS AVENUE
SAN FRANCISCO, CA 94102-3214